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Abstract— With increasing needs of fast and reliable commu-
nication between devices, wireless communication techniques
are rapidly evolving to meet such needs. Multiple input and
output (MIMO) systems are one of the key techniques that
utilize multiple antennas for high-throughput and reliable
communication. However, increasing the number of antennas
in communication also adds to the complexity of channel esti-
mation, which is essential to accurately decode the transmitted
data. Therefore, development of accurate and efficient channel
estimation methods is necessary. We report the performance
of machine learning-based channel estimation approaches to
enhance channel estimation performance in high-noise envi-
ronments. More specifically, bit error rate (BER) performance
of 2 x 2 and 4 x 4 MIMO communication systems with space-
time block coding model (STBC) and two neural network-based
channel estimation algorithms is analyzed.

Most significantly, the results demonstrate that a generalized
regression neural network (GRNN) model matches BER results
of a known-channel communication for 4 x 4 MIMO with 8-bit
pilots, when trained in a specific signal to noise ratio (SNR)
regime. Moreover, up to 9dB improvement in signal-to-noise
ratio (SNR) for a target BER is observed, compared to least
square (LS) channel estimation, especially when the model is
trained in the low SNR regime. A deep artificial neural network
(Deep ANN) model shows worse BER performance compared to
LS in all tested environments. These preliminary results present
an opportunity for achieving better performance in channel
estimation through GRNN and highlight further research topics
for deployment in the wild.

I. INTRODUCTION

With the increasing use of wireless communication in
many devices and applications, the need for fast and reliable
wireless communication has also rapidly increased. Multiple
input multiple output (MIMO) communications is a key
technology that can significantly increase the performance
of wireless communication by utilizing multiple transmitter
and receiver antennas at the same time. A major challenge
of a MIMO system is the necessity of accurate channel
information [1]. Channel estimation becomes more com-
plex when the number of antennas is increased. Inaccurate
channel information can significantly deteriorate the overall
communication performance. Thus, developing a method that
robustly estimates channel information is required to support
both current and future communication models (e.g., massive
MIMO) that utilize numerous antennas for communication.
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Wireless communication technologies, including most
channel estimation methods, have been developed based
on theoretical models with extensive mathematical anal-
ysis. Recently, neural network architectures have gained
immense popularity because of their excellent performance
in solving challenging tasks. Several wireless communication
studies [2]-[6] have tested the performance of neural network
models on channel estimation or modulation detection. To
this end, we analyze two different channel estimation mod-
els that utilize (1) a generalized regression neural network
(GRNN) and (2) a deep artificial neural network (Deep
ANN). Specifically, we consider MIMO channel estimation
as a regression problem and test the BER performance when
the channel matrix is estimated using these neural network
models. We evaluate the performance of these models using
2 x 2 and 4 x 4 MIMO communication with the space-
time block coding (STBC). We further compare the BER
performance with of channel estimation using an existing
least square (LS) channel estimation method and known
channel information. To this end, we investigate the impacts
of different training ranges for signal-to-noise ratio (SNR),
and different numbers of pilot signals for channel estimation.

The contributions of this study are twofold: (1) We show
the BER performance of two neural network-based regres-
sion models, GRNN and Deep ANN, on 2 x 2 and 4 x 4
MIMO channel estimation and (2) demonstrate the existence
of favorable training environments for a neural network-
based channel estimation model. The simulation models for
MIMO communication and the neural network models are
designed using the toolboxes in MATLAB.The evaluation re-
sults show that GRNN model can achieve high performance
in channel estimation, matching the BER values of a known-
channel communication, especially with sufficient number of
pilot bits (e.g., 8 bits). The analysis results also demonstrate
that training data from certain noisy environments (SNR
ranges of —10 to 0 dB and —10 to 10 dB) are effective
for training GRNN models compared to other SNR ranges
(e.g., —20 to 20 dB and —30 to 30 dB). More importantly,
models trained at small SNR ranges show similar BER
performance compared to that with the ground truth: known
channel matrix. The analysis results show the feasibility of
estimating the channel matrix through neural network models
and demonstrate that a certain range of noisy environments
(i.e., —10 to 10 dB SNRs) and numerous inserted pilots
are beneficial for channel estimation with neural network
models.



II. RESEARCH BACKGROUND

MIMO can increase throughput compared to single input
and single output (SISO) systems [7]. The channel capacity
of a MIMO system linearly increases with the number of
antennas [8]. Spatial multiplexing and diversity techniques
are two main features of MIMO communication [9], where
data rates can be increased by sending more information at
the same time or reliability can be improved by sending the
same information across independent fading channels.

Recently, machine learning approaches have gained pop-
ularity in solving challenging problems within computer
vision, speech recognition, and natural language processing
fields. Within the field of machine learning, artificial neural
networks are particularly effective. Recently, neural network
models have been utilized to solve problems related to wire-
less communications. For instance, modulation detection [2]
and channel estimation [3]-[6] have been studied. Among
them, channel estimation is of particular interest in MIMO
communication, and channel state information has been esti-
mated by a variety of approaches such as Gaussian mixture
models [3], convolutional neural networks (CNNs) [4], [5],
and deep neural networks [6].

More specifically, an approximate message passing neural
network, which incorporates a denoising CNN, is used in
[4] for channel estimation in massive MIMO systems. It
is shown that this model achieves higher performance on
channel estimation compared to compressed sensing-based
algorithms for massive MIMO systems. In [5], CNNs are
utilized to estimate and to remove estimation error or channel
noise from the standard belief-propagation (BP) decoder.
Correlated channel noise is minimized by iteratively using
a BP decoder and CNN and the feasibility of achieving
better performance is shown. In [6], the performance of
deep learning (DL) models for channel estimation and signal
detection in an orthogonal frequency division multiplexing
(OFDM) system is analyzed. This deep model can directly
recover transmitted symbols without an explicit process of
channel estimation. The analysis results demonstrate that
the deep learning model can have comparable performance
with a minimum mean-square error estimator under channel
distortion and interference. However, this study is limited to
OFDM because channel estimation is coupled with decoding
within the model, and impacts of DL model in specifically
channel estimation are not decoupled.

One limitation of previous studies is that they mostly
focus on investigating the channel estimation performance in
high-SNR communication environments (e.g., positive SNR
ranges) rather than testing the performance in high noise
environments with negative SNR ranges (e.g., from —10 to 0
dB). We focus on training and testing neural network-based
models while varying the training environment (i.e., using
negative SNR ranges or using both positive and negative
SNR ranges) Then, we compare channel estimation perfor-
mance from these models to the existing least square channel
estimation and known channel from the simulation model.
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Fig. 1: MIMO Simulation Model with STBC

III. METHODOLOGY

Using MATLAB, we designed 2 X 2 and 4 x 4 MIMO
communication models that include an orthogonal STBC
scheme (See Fig. 1). STBC is a diversity technique that
transmits multiple copies of data (i.e., diversity) across a
number of the antennas to improve the reliability [10],
[11]. All the received copies of the signal is combined to
maximize decoding performance. STBC demonstrates strong
performance on data transmission in noisy environments,
multi-path or fast fading channels [12]. Therefore, STBC
is an attractive environment for testing the performance of
neural network models for channel estimation, particularly
in noisy channels. We utilize an STBC scheme for the 2 x 2
MIMO system (rate = 1) and the 4 x 4 MIMO system (rate
= 3/4).

MIMO communication system utilizes pilot symbols in-
serted in the data frame for channel estimation. After mod-
ulation (i.e., BPSK), the modulated data is transmitted by
multiple transmitter antennas and is received at multiple
receiver antennas. We utilize a Rayleigh fading channel in
our evaluations. In the experiments, four different channel
estimation methods are utilized: GRNN- and Deep ANN-
based estimation, a least square (LS) channel estimation
model (i.e., least processing between pilot signals and re-
ceived pilot signals) [13], and the known channel. After
channel estimation, the estimated (or known) channel is used
for STBC decoding, and the estimated channel’s performance
is measured in terms of the BER of the decoded data.

As with LS channel estimation, the GRNN and Deep
ANN models utilize transmitted pilots and received pilots
as input. The outputs of the models are predictions of the
channel matrix based on the transmitted and received pilot
signals. Training data is provided in the form of (transmitted,
received) signals, where the channel matrix used to compute
the received signal from the transmitted signal. The models
are then trained to minimize the mean squared errors (MSE)
between the predicted and true channel matrices, where
MSE is computed per matrix entry. A major issue in using
neural network algorithms for wireless communications is
the fact that data is generally complex numbers (e.g., channel
matrix). In this work, we consider the real and imaginary
parts of each complex number as distinct elements in channel
estimation but other approaches can be considered for future
work. For instance, when a 2 x 2 MIMO system is used, the
total number of required complex numbers for the channel
matrix is 4, and the number of estimation outputs from the
neural network models is 8. The training data of GRNN and
Deep ANN are generated by a designed MIMO simulation
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Fig. 2: Designed Neural Network Models for Channel Estimation

model with same Rayleigh fading channel model.

To investigate how channel estimation is influenced by the
training environment, we vary the SNR ranges while training
the neural network models. We test six different training data
samples, which are generated by the following SNR ranges
(in dB): (1) [-10, 10], (2) [—20, 20], (3) [—30, 30], (4)
[—10, 0], (5) [—20, 0], and (6) [—30, 0]. Moreover, we vary
the number of pilots between 2, 4, and 8. The number of
training data per each SNR value is set to 100, 000 bits. The
models are tested using data generated in the SNR range of
[—10, 10] dB.

The GRNN model is a radial basis neural network that
estimates continuous variables by taking the weighted av-
erage of the values from their neighboring points [14]. The
closest neighbor will have a higher weight compared to other
neighbors, and the estimation is performed by a radial basis
function (RBF). One GRNN model parameter is o, which
determines the spread of a Gaussian distribution curve. For
instance, if the sigma is large, the Gaussian distribution
becomes more spread. The advantage of GRNN is that it
can find a regression surface even with a small number of
training data [14]. Many studies have utilized the GRNN
model for regression tasks, and it has demonstrated good
estimation performance [15]. We apply the GRNN model
for MIMO channel estimation, and this model estimates the
real and imaginary parts of elements in a channel matrix.

The GRNN model’s structure is shown in Fig. 2(a), which
consists of the input, pattern, summation, and output layers.
More specifically, the input layer receives the data and passes
to the pattern layer. The neurons in pattern layer are a trained
pattern and the output of pattern layer represents a measure
of the distance between input data and stored patterns. The
summation layer determines the sum of weighted outputs
and unweighted outputs and the output layer estimates a
value by using it as numerator and denominator. Similar
to LS estimation, transmitted and received pilots are used
to estimate elements of the channel matrix. For instance,
Sp1 and Rpp in Fig. 2(a) represent sent pilots and received
pilots, respectively. Also, Hy, and H;; represent the real and
imaginary parts of a first element in the channel matrix. The
regression process in GRNN is shown as:
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where, X is an input vector, Y is a target vector, D is the

euclidean distance between a sample and the value, and o
is a spread parameter.

In addition to the GRNN model, we also utilize a deep
ANN model, which has been shown to approximate any
function of interest to any desired degree of accuracy [16].
The architecture of the deep ANN model is shown in
Fig. 2(b). Similar to [17], where ANN is used for solving
a regression problem in speech enhancement and Chinese
handwriting recognition, the deep ANN model has four fully-
connected layers. Rectified linear units (ReLu) and dropout
layers are also added to enhance the performance of weight
updates and to avoid overfitting. We set the hyperparameters
based on results from [18]: The number of neurons in the
fully-connected layers is 100, except in the last layer, which
has the same number of neurons as the number of elements
in the channel matrix. The training is conducted for 200
epochs, using stochastic gradient descent with momentum
and mini-batch size of 30.

IV. CHANNEL ESTIMATION PERFORMANCE

The channel estimation results from GRNN models in 2 x2
and 4 x 4 models are shown in Fig. 3. As shown in Fig. 3(a),
in 2 x 2 MIMO system, GRNN models trained in [—10, 10]
dB and [—10, 0] dB SNR ranges have a 0.5-4 dB lower SNR
requirement for a fixed BER, at low SNR regime, [—10,
—5] dB, compared to LS with 2 pilot signals. Increasing
the pilot signals from 2 to 4 improves channel estimation
for GRNN (Fig. 3(b)), where the known channel BER is
matched for SNR < —6dB. Further increasing the pilot
signals to 8 (Fig. 3(c)) results in a better channel estimation
performance compared to LS (by 0.5 - 2dB) up to 6dB,
when GRNN model trained in the [—10, 10] dB range. It
can be observed that GRNN model cannot easily generalize
the learning performance outside of the training range, where
a rapid performance degradation is observed for SNR of 0
dB, when the model is trained in the [—10, 0]dB range.
This might relate with the fact that the GRNN model does
not contain training data which was collected in the positive
SNR regime.
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Fig. 3: Achieved Bit Error Rate (BER) from GRNN and Deep ANN models

Overall, the GRNN model, with [-10, 10] dB training,
shows a better channel estimation performance compared to
LS at the low SNR regime. The range of SNR values for
which GRNN outperforms LS depends on the number of
pilots (i.e., [—10, —5] dB for 2 pilots, [—10, 0] dB for 4
pilots, and [—10, 6] dB for 8 pilots). Other training ranges,
([—20, 20], [-30, 301, [—20, 0], and [—30, O]) result in
performance loss compared to LS at all tested SNR values.

For 4 x 4 MIMO (Figs. 3(d-f)), similar observations are in
order. It is important to note that the GRNN model trained in
the [—10, 0] dB range results in better performance compared
to the [—10, 10] dB range, with 2 pilot signals (Fig. 3(d)).
However, performance degradation still occurs at 0 dB.

The most significant results of our evaluations can be
observed in Figs. 3(e-f), where 4 and 8 pilots are used.
The GRNN model trained in the [—10, 10] dB SNR range
shows almost identical performance with known channel
when using 4 or 8 pilots at all test SNR ranges. Moreover,
the performance enhancement is almost 1.5 dB compared
to LS method. Considering that 4 x 4 MIMO model will
collect more channel information compared to 2 x 2 MIMO
model, this fact might relate to the high channel estimation
performance in 4 x 4 MIMO model compared to 2 x 2 MIMO
model.

Similar to the analysis with GRNN, various training envi-
ronments (e.g., different SNR ranges, pilot signals) are tested
for deep ANN model and the best performance was achieved
for the model trained in the [—10, 10] dB SNR range. In
neither 2 x 2 and 4 x 4 MIMO communication models does
deep ANN provide any clear performance enhancements
compared to LS method with respect to the different training
environments (Figs. 3). From all tested environments, deep

ANN model shows similar or lower channel estimation
performance compared to the LS method.

TABLE I: Processing Time Measurement

Models Data Size (bits) | Training (sec) | Test (sec)
GRNN (2 x 2) 6 Million 19.18 | 2,875.00
GRNN (4 x 4) 6 Million 21.94 | 5,764.00

Deep ANN (2 X 2) 6 Million 3,685.00 48.86
Deep ANN (4 x 4) 6 Million 7,878.00 60.24

Despite its remarkable performance for some combination
of SNR training ranges and number of pilots, GRNN suffers
from testing complexity, when operation in the wild is con-
sidered. In Table. I, the training and test durations for both
GRNN and deep ANN models are shown. It can be observed
that GRNN enjoys a significantly short training duration (0.3-
0.5% of deep ANN), whereas testing is comparatively longer.
This suggests that GRNN model may not be suitable for
operation in the wild and new methods that match GRNN
performance may be needed.

These results indicate that GRNN model achieves a better
performance compared to our deep ANN model, matching
known channel in certain scenarios, which is promising.
However, further investigation is necessary to measure the
general performance of deep neural network based channel
estimation models since deep neural network architecture
needs a huge amount of data for training and only one type
of deep neural model (deep ANN) is evaluated in this work.

V. CONCLUSIONS

We studied the use of neural networks in channel esti-
mation in noisy environments. We evaluated both a GRNN



and a deep ANN. Our results indicate that a GRNN model
has the potential to match known channel performance and
outperform the existing LS method for channel estimation.
GRNN was shown to be particularly strong for channel
matrix estimation in the low SNR regime.

First, a channel estimation process requires processing
complex numbers. We represent these complex numbers as a
pair of numbers rather than using all the information implicit
in a complex number. One existing solution for handling
complex numbers is using a neural network model that can
directly handle complex inputs [20]. An additional limitation
of our study is that the proposed channel estimation methods
have a limited range where they show improved performance,
i.e., mostly only observed in negative SNR environments.
This result might relate to the characteristic of GRNN
model which fully relies on the information of training data
for regression tasks. However, analysis results from this
study are not sufficient for specific reasoning and further
investigation on studying a relationship between specific
training SNR and specific test SNR is necessary to reveal
the optimal training environments for channel estimation.
Additionally, the deep ANN model in this study is designed
to reduce squared errors between estimated channel and
known channel during training process. Future work will
consider direct optimization of the bit error rate (BER).
Finally, we limit the architecture of a deep-learning model
as a stack of fully connected layers; however, there are
many different architectures, such as CNN and RNN, that
have performed very well in computer vision and language
processing. Additional studies on different types of neural
network models for channel estimation are also necessary
for further development.
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